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I. JINTRODUCTION

Many aspects of terminal ballistics testing are in apparent need of
procedural standardization. We attempt here to deal in part with one
such area: representation of the relationship between striking and
residual velocities implicit in sets of(vs. vr)data.

A form is proposed as being sufficientiy simple and versatile to
usefully and realistically model velocity interdependence. A regression
technique (a direct non-linear least squares algorithm) is presented
which, through empirical parameter determination, establishes a systematic
method for obtaining an explicit €functional relationship; in particular,

a "limit velocity" is thereby routinely generated from input data. It
is suggested that what is here described might substantially contribute
towards a standardized methodology for assessment and categorization of
velocity data and towards standardi:zation of strategy in testing.

In short, if the overall procedure is accepted, then a formula is at
hand to concisely contain experimental velocity information. Indeed
much of the information from a data set is condensed into a triplie (a,
¥vg, p) of numbers which uniquely specifies the relationship. Ideally,
and in the nature of future intent, these numbers should be qualified
according to data variance and endowed with a statistical appraisal of
confidence.

The practicable essence of this report is cast in a comprehensive
list of Fortran directives which methodically induces machines to extract
parameters from data and to plot corresponding (vs, vr)curves.

IT. A PROPOSED FORM

1. Context and Form Considerations

A frequent test, of multiple special interest, in terminal ballistics
consists of the firing of a number of nominally identical projectiles
(penetrators) into as many nominally 1dent1cal targets with all controlled
phenomena except for striking velocity®, Vg belng nominally invariant.
The measured response to each such impact which is of present concern 1s
projectile residual velocity, v_.. A collection of data points (vg, Vv
is thereby obtained. In accord with common usage, each shot is deemeﬁ
to result in "penetration," whiie "perforation" is signalled by the
criterion v, > 0.

*For pregent purposeg we regard striking velocity as a controlled variable.
Also, in deference to prevailing custom, velocilies are taken to be
non-negative numbers rather than vectors.

Preceding page blank
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Let us suppose a given projectile-target situation, by which it is
assumed that a given projectile impacts a given target with variable
striking velocity v_ but with all other relevant pre-impact characteris-
tics being given and constant. From this point and this premise the
discussion admits of mathematical idealizatiomn. In the given context
residual velocity can be considered a function of striking velocity;
vy = £ (vg) for vg 2 0. We ascume the existence of a limit velocity, Vo
characterized (i.e., defined) by the properties: V.= 0 for 0 < v < Ve

and V. 0 for Vo > v equivalently, v_ = max {vszvr = 0} = inf {vs:v

£ '3 r
> 0}."

As further characteristics of a suitable (and workable) model, we
desire continuity and that, for v_ > v,, the function be strictly in-
creasing, smooth (differentiable) and concave*® (cvery chord lies beneath
its intercepted arc). The latter propert.es are secured by requiring
that the function posscss at each point on its support ({x : f{x) # 0})

a positive first and a negative second derivative. Such stipulation is
of course largely contrivance and is not experimentally decidable but
is convenient, supgestive of physical experience, and imposing of no
apparent conflict with experiment or theory.

-

2. Further Form Consideraticns: Simple Penetration Theory and the

Hyperbola

Traditional penctration theory, especially where an explicit model
is developed, has been most extensive (and evasive of much unpleasantness)
[ in dealing with the casc of a rigid (mass-preserving), essentially non-
deforming penetrator; e.g., a steel projectile impacting a thin aluminum
plate. Such treatments, otherwise tolerating a diversity of assumptions
about the physics of the particular penetration process conjectured,
have beer. numerous.

It is a pertinent observation, and is perhaps not generally recognized,
that the penetration modcls evolved from these theories have almost
invariably adhered to one basic form; specifically:

0, 0<v «<v
S L

v, ® ( 5 5 1/2 ' . (1)
N alvg -v, ) s Vg o vy

*
- Here and elsewhere we
1

e s
a "shatter regime," i.e
X # X

pacij?calla egcl:de the pgssibility of mudeling
.y We are inststing that if f(;l) > 0 and '

12 then f(x,) > 0. Thic is not considered a seribus compromise
with the generality for which we strive.

The inf{imwn) of a set is its greatect lower bound, 4
A
Thic precludes the poussibility of inflection points. 1
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For instance, the Poncelet-Morin hypothesis* of 1829 comcerning the
resistance offered a projectile in motion through a dense medium leads,
with supplementary assumptions, rather easily to this form (c.f. Robertsom
[1943]); so also does the quite different simple energy-mementum snalysis
of Recht and Ipson [1963]. A variety of other approaches falls into line
(Nishiwaki, Thomson, Zaid and Paul, etc.). The various models ultimately
differ precisely in so far as do the formulations for a and vy; which

quantities we will tend to view as parameters to be subjected to optimal
adjustment in a given situation.

Our examination of available data tends to confirm that experimental
results can often be well represented within the framework of form (1),
particularly in situations where there is not (or is not expected to be)
excessive projectile deformation. Theory and experience persuade us
that in many instances (1) does offer a viable model. We will feel
obliged presently to adopt many characteristics of this form, and the
form itself as a special case, in a proposed more versatile basic form.

We note that form (1) meets the requisites of the previous section.
Additionally, there is an infinite right derivate at vp; i.e., while

dv
. .. . dv
BT does not exist at Vps it is true that vlig Y. =, Also av
s s £ dv s

S

approximates v for large values of ves precisely, v:lmm (a v, - vr) = 0.

Observe that for Ve 2V, (1) is a quadrant of a hyperbola with

center at the origin, major axis coincident with the horizontal axis,
having as one asymptote the line through the origin of slope a.

The assumption of projectile rigidity typically associated with this
form facilitates dealing in terms of kinetic energy; within the perfora-
tion regime, (1) implies linearity between striking and residual energies:

2

e, = a® (e_ - e,), where symbol meanings .re presumably evident. It may

at this point be worth ncting that even in cases where significant de-
formation and mass loss are experienced, we have observed tenative
cxperimental indication (from situations where residual mass measurements
are available) of approximate linear correlation between striking and
residual energies.

t 4

A modificatior. of earlier "sectional-pressure” theories asserting that
the force resisting penetratiom at a given target depth is jointly
proporticnal to a depth-dependent cross-sectiomal projectile area and
to a linear function of instantaneous projectile energy.

[
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Since v_ cannot exceed v_, an imposed parameter constraint will be
0<a< 1. tn the event of perforation by a rigid projectile, an impli-
cation of the special case a = 1 is that energy lost to the penetration
process is independent of striking velocity. The various proposed models
of type (1) generally concur that a should be near one for thin targets
and, other things being equal, should decrease with increasing target
thickness. For example, from the formulation of Recht ,and Ipson for an
assumed plugging mode of failure, we have a = (1 + r)'1 where r is the
ratio of the mass of the ejected plug (small for thin plates) to that of
the projectile.

Otherwise extant simple penetration models are prone towards abject
empiricism - randomly selected theories zlleged to fit experimental data,
limited of scope, curicusly behaved, and in any event not sufficiently
adaptable for our purposcs to be usefully exploited*.

3. Present Proposal: The Basic Form

There is clear experimental indication that in geners] a somewhat
more flexibie model is required to reprusent the velocity relationship
being considered. In particular it has been fourd that form (1) is
often not capable of adequately reflecting observed behavior for vg above
and in the vicinity of the derived v,; such deficiency can be rather
dramatically apparent for instance in multiple plate situations and in the
case of long rods perforating compsaratively thick armor. Nor is this
especially surprising for it is just in this region that one might
suppose deformation to be most consequential; it is expected, c.f.
Defourneaux [1973], that the proportional contributinn of plastic defor-
mation (and of friction) to total energy expenditure diwisishes towards
zero as v, becomes large. 1In addition to the vagaries intrnduced by the
i possibility of projectile defurmation, the general inadequac,s of (1)

' might be reflected as well in variability of target deformation. More
, significant than the absolute susceptibility to deformation of either
; projectile or target, we expect, may be the manner in which the defor-
: mation patterns are distributed with striking velocity.

A basi. form assimilating desired general characteristics™* and
considered, from a wide spectrum of experimental evidence, well suited
to effectively represent observed behavior is:

Scme frequently encountered phenciena of these models which we find
restrictive or at variance with our physical expectations are unaccount-
able diecontirnuitiee and inflection points, either lack of an aeymptote
or ingistence that the asymptote have always a slope of one (or some
other immutable value chosen by caprice) and absence of an infinite
right slope (derivative) ut vp.

EX .
A partial exception will be noted in the next sectiom.

12
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Vr = l/r [ (2)

with constraints 0 S a <1 and p > 1.

It is regarded that (2) offers additional and sufficient versatility
precisely in the vegion where (1), which is a special case of (2), was
found to be deficient. The parameter g assumes its previous role and is
most visible as the slepe of the asymptote; analogous asymptotic behavior
is insured by the requirement p > 1. The parameter p, sensitive primarily
it is felt to deformation, we view as a shape factor controlling how
sharply the function rises towards the asymptote **. The injection of
the variable p in place of 2 is inescapably empirical but procures an
especially natural and appropriately conservative generalization. Both
a and p are clearly devoid of physical dimension. It is possible,
though not at issue here, that for a large class of situations the three
parameters can be sufficiently well prescribed in terms of relevant
physical dimensions sc as to determine an explicit functional model of
predictive scope (one would for instance selectively borrow from rigid
penetrator theory for a and v, formulatiun) and this theme may be pursued
later.

It is rather our present purpose to advocate that form (2) serve as
a stondard framework within which to cast experimental results; we
furtheyr propose that explicit relationships be obtained from given sets
of (v, V_) data by the systematic determination of triples(a, vg, p) of
paramccers from the regression procedure which is to follow (or, more
literally, from the associated computer program).

The parameter v,, marking the boundary of perforation, is often of
special import. Standaxdized adoption of the outlined scheme would in-
clude acceptance of a v, so generated as teing definitively the limit
velocity {for the given projectile-target situation) implicit in the given
data set.

w
1. There i& resemblance in form to what have been called "power means,

P 1/p
expressions of the ferin = (___1_1f, for example is the
Lorentz mean in the theory of equatton of 8ba%e for gases.

2. It i€ poth interesting and irrelevant to recall Fermat's notorious
"last theorem" (17th Cenmtury), asserting that fora =1, v_ > v, > 0
and p > 2, there are no integral values for the symbols vs, \7) and p
which catisfy (2).

phile it i8 of course true that avg - vp + 0 as vy + = for fixed p > 1
(i. € there i8 an asymptoie of slope a emanating from the ortgtn)
18 also true that av, - V. * 0 as p + » for fixed vV, > V.

RSN 13
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4. Comments, Perspectives, and Implications

(i) 1Initial expectation was that a non-deforming projectile repre-
sented an ideal, that (mindful of traditional theory) such perfection
could be best accommodated for p = 2, and that aberrations should if
anything require higher values of p (roughly, that increase in deforma-
tion should correspond to increased rate of ascent of the(v_, VrJ curve -
that the "ideal' should correspond to a limiting value of the parameter
P). Two seemed a likely minimum. Whatever the merits of the reasoning,
the expectation has, in our experience, been borne ocut for situations

involving long rod penetrators, but not in general; fragments provide a
frequent exception.

(ii) As there is occasional concern in the literature and elsewhere
with change or loss of projectile velocity effected by penetration, it
might be of some value to consider form (2) from this perspective.
Letting A = v, -V, we rewrite (2) as:

Vs 0< Ve < v,

A= 1/p . (3)

- P__P
v -a (vS Ve ) » Vg >v,

It is clear that the corresponding curve is asymptotic to the line
from the origin of slope 1 - @; 4 is thus obliged to ultimately, with
increasing striking velocity, either decrease towards zero or increase
without bound depending on whether g is one or less. .

For v, > v and ¢ < 1 it is routinely verified that A achieves a

minimum value {and the corresponding point on the(vs, v,) curve has

i s
slope 1) at the point vy = vy (1 -a 7 . Experimental affirmation

that velocity loss can, as implied, decrease to a relative minimum and
then increase is noted e.g., by Goldsmith and Finnegan {1973].

(iii) Another perspertive can be attained by considering transfor-
mations which map the region under the(Vs, Vr)curve into finite area.
We speculate that such device may be of use inm providing additional
measure of parameter effect. As an example we offer one such transfor-
mation which maps functions of type (2) onto the unit interval and yields
area as a function of p while normalizing the effect of a and vy

v v

—=. For v_ > v, we rewrite (2) as:

= 1 1 =
Let w v and z y s 2

S

(7]

1/p
w=(-2P) . (4)

i4
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The associated curve is concuave, symmetric sbout the lineé w = z and
contained by the triangie with vertices (0, 1), (1, 0) and (1, 1); for
P = 2 the curve is a quadrant of the unit circic. Area under the curve,

i/p
fl 1 - zp) dz, is an increasing function of p with limiting values
0

of 1/2 and 1 for 1 < p < =,

An analogous measure, and one more computationally immediate, is
provided by the L, norm. Letting g (z) = w we observe that g is an
element of the (classical Banach) space L_ (0, 1)*. The appropriate
norm is given by P

1/t i/p 1/p
igl = 1 P = 1 - 2P = (B
gly = (7 11D (ffa - 2 an Gop -

lglp is similarly an increasing function of p, and 1/2 < lglp < 1 for
1<p<eo_

(iv) This section is concluded by noting an appealing property of
form (1) which is not preserved in the generalization to form (2).

The composition of two functions of form (1) is itself of this form™*
(composition is a binary operation on the class of functions of this
form). If (1} is regarded as the operable medium and a situation involves
a target comprised of several parallel plates, then (1) can be used
consistently for both the whole target situation and that of each
"'subtarget."” In particular the specifying parameters for the target can
be calculated from those for the constituent plates.

Unhappily, such is not the case within the context of form (2)
unless p is set at some fixed value. To be quite specific: supposec we
are dealing with a target ensemble of two plates perforated by a

*

i.e., g is Lebesgue measurable on (0, 1) and j]1g IP < . It is of
0

course equally true that g € Lq (0, 1) for all 1 € q < = but in the
e of p the observation is especially natu.dl.

**Basically, because the class of appropriately oriented hyperbolas is
Vx

closed under composition; if fl(x) =a \ z . v2 and fz(x) =b xz - w2
‘/ 2 2 w2
then fltfz(x))= ab ¥x° - (v° + —79: the composition f1 f2 i8 ¢ hyper-
a

bola of the same type as £y and f,. (To go further, the class of auch
hyperbolas is an abelian group un%er the composition operation).

15
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prejectile having initial, between-plate and final velocities denoted
by x, y and z respectively. Then we would like to say that

y=a (xp - vp)llp and z = b (yq - wq)llq for some a, b, v, w, p and q.
But the implied overall striking-residual connection is then

z=a [(F - vp)q/p - (‘i/a)q]l/q which does not conform to (2). This
lack of closure under composition, while not stri "ly an impairment to
the present concern of supplying effective vepresentations of velocity
relationships, does preclude full mathemaiical consistency in the
consideration of multiple plate targets.

IiI. THE PARAMETERS

1. A Regression Procedure for Parameter Estimation

We now suggest a mechanism for the determination of explicit form
(2) reprecuntations from given data sets. It is convenient for the
moment to replace Vg Vo and \ in (2) with x, y and ¢ respectively.

Following is a least squares algorithm for fitting the form

0, 0 x<¢

a (xp - cp)l/p, X >c

with constraints 0 s g€ 1 and p > 1 to a data set {(xl, Yids ot (X yn)}

y:

of pairs of non-negative integers, each X, and at least cne Y; being
positive. It is assumed that n 2 2, X <X, and X € X, ter £ X L*

Parameters subjected to estimation are a, p and ¢ (or otherwise as
indicated).

For the mechanics of the algorithm we will also suppose that p € 8;
this is a harmless restriction as there is but minimal variation in the
form for p > 8 (2 and ¢ fixed)**, and it is necessary to specify some
upper bound for p. Further, reflecting upon the input data and the
interval spacing selected for search routines, c¢ will be required to be
an integer and p will be confined to the set {1.1, 1.2, ---, 8}. These

*That 18, we need at lLeast two data pairs and at least two distinet x
values; additionally, the data pairs are asswmed to be ordered accord-
ing to increasing values of x - this latter requirement will in practice
be obviated by the inclusion of a preliminary sorting routine in the
computer program.

44 megsure of thie variation ig conveniently cfforded by the L_ norm
specified in II 4 (iii). We note that ﬂgls > .985 while Jlik Hp = 1.

16
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strictures have been found reasonable for the particular application in
mind but are of course easily altcrable.

Immediate interest is in what will be called the standard program,
SP, in which the complete parameter set (a, ¢, p) is estimated. There
is related concern with the follow: ng special options which it is con-
venient to simultaneously establish;

01: p is prescribed, cnly g and ¢ are determined,
02: a is prescribed, only ¢ and p are determined,
03: a and p are prescribed, only ¢ is determined.

In the usual spirit of the least squares approach, we seek in each

case appropriately constrained parameters which approximately minimize
the function

1/p 2
. 2
@ e mke Y "o 1@ A AR

Root mean square error (or standard error) is expressed by '/% Y(a,c,p).

With no possible loss in precision (as measured by the value of ),
we require that 0 € ¢ < X and, for SP and 01, that a =1 if ¢ = X,

01 and 03

1/p 2/p

Let g(c) = Z yi(xip— cp) and h{(c) = Z (x.p - cp) R c=0,1,...,xn.

X.2C x.»c
i i
Then g @2 0 and h > 0 for 0 < c < X g(xn) = h(xu) = 0; and
no2
1 (G»Cnp) = Z yi -a (28 - ah).
i=1
In the case of 01, if 0 < ¢ < X, ¢ is a quadratic in g having an

2
absolute minimuim at a = g/h 2 0 (-g% = 0, 9 ?gl > O) . For fixed ¢, ¢
\ J9a /

is thus minimized (exactly) for 0 € ¢ < 1 by taking @ = min (g/h, 1).

17
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:}ccordingly, the optimal value for a corresponding to a given value ¢
1s

f"ﬂ'ﬂﬂ'§H
t

. g{c)/h(c), g(c) < h(c)
a (c) =
1, g(c) 2 n(e).

nep e

For 01 and 03 respectively, define:

2 ()/nic), g(c) < h(e)
2g(c) - h(c), g(c) > h(c)

(1) ¢(c) = a(c) [2g(c) - a(c)h(c)] =

and
(i1) ¢(c) = a [2g(c) - ah{c)].

n
In both cases the expression I Ys z. ¢(c) needs to be minimized;
i=1
this is accomplished by finding a value ¢ which (approximately) maximizes

the function ¢(c).
We first generate an initial estimate e

Llet a =nmin {1 =1, 2, *-°, n : Y3 > 0}, Xy =Y, ® 0, and

B=max {i =0, 1, =+, n; Yi‘o}-

%

<, then derives from a linear least squares fit of yp = p(xp - cp) on
ﬂkip, yip) : i @ a} with constraints ¢ > 0, and c > Xg if a > 8.* :
The explicit procedure for generating c, is as follows:
letr=n-a+l,

1
- & 2 R S LU - P,
by= Z %7 b= 2 "i'bs‘.xyi'ba‘f(")')
1=Q 1= 1=qQ 1=a

*In the language of our physzcal medel, we are constrai ntng the initial

-t

limit velocity estimaie to be at leawt a8 large as the largest striking
veloeity for which there is no perforation unless perforation does occur
at some smaller striking velocity.

.
et il i

Note that the linear regression doee not use data points to the left of
the firet point for which there ie perforatiom.
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2
us= and, to the nearest integer,
255 p w2
2 ' 1 2
2
1/p
) , u>0 and bzu > bs.
t =
0, otherwise .
t, a8
Then let ¢ = .
©° max (t, xB), x> 8

Normally c, should be a very good estimate for the parameter ¢ and,
as a simplifiea method suitable for desk calculators, it might be
acceptable to stop at this point; it should then however be realized thct
c has not been derived from a direct non-linear least squares fit of the
form to the data but results rather from a linear fit to a transformation
of a subset of the data.

The last step is to search for a better estimate.

Routine 1: Starting from ¢ = ¢,, successively evaluate ¢(c), letting
¢ vary by steps of one unit in the direction of increasing ¢ (if there
should be a local minimum at c,, proceed to cy+l); let ¢ be the first
value for ¢ such that ¢(c) is at least as large as both ¢(c-1) and ¢(c+1),
or such that ¢ = 0. Formally: let C = ¢, + j,, where

jo = 0 if ¢(co) - ¢(co+1) and either ¢, = 0 or ¢(co) >4 ¢(c°-1),
Jo =min {j 21 : ¢{c +i*1) < o(c +i)} if o(c ) < ¢(c +1),
jo = -min {j » 1 : ¢(c°-j-1) < ¢(c°-j) or 3 = co} if

¢(c*1) < d(c ) < o(c,-1).

While there is no assurance that c provides the largest possible
value for ¢(c), it does better than the initial estimate, c,, which is
itself expected to be good and further searching is considered
unwarranted.

For 01 the parameter estimctes are g = a (¢) and ¢ = ¢.

For 03 the estimated parameter is ¢ = c.

19
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SP and 02

We rely upon much of the preceding technique while allowing p to
vary.

For a fixed value of p, let g(c), h(c) and a(c) be as before and let
¢(c) be defined as in (i) and in (ii) for the cases SP and 02 respec-

tively.

For p = 2, determine c, as described previously; then use Routine 1
to find the corresponding ¢, which we now denote as C(2).

For p = 2.1, 2.7, <++,8 respectively, let ¢(p) be obtained from its
predecessor by using Routine 1 with S, replaced by c(p - .1). Similarly,

for p = 1.9, 1.8, ---1.1, let ¢(p) be successively generated by using
Routine 1 with ¢, replaced by ¢(p + .1).

Let &(p) = ¢(E(p)), p = 1.1. 1.2, --+,8.

Approximate maximization of $(p) is desired and we follow a search
routine, starting from p = 2.* Explicitly: let p = 2 + k/10 where
k = min {j = 0,1,°++,60 : $(2+j/10) » $(2.1+j/10) or j = 60} if
$(2) < $(2.1);

k=-min {j = 0,1,°+,9:$(2-3/10) > $(1.9-j/10) or j = 9}
if $(2) > 6(2.1).

For SP the parameter estimates are a = a(é(p)), ¢ = ¢(p) and p = p.

For 0, the estimates are ¢ = &(p) and p = p.

2. A Remark

Reliance upen a direct non-linesr regression technique necessitates
high-speed computing ability. The form does not seem to lend itself to
linearization in any acceptable manner but we do at least expect to

*
Starting from p = 2 i8 primarily a matter of computational expedience;
we expect that in many instances the optimal value of p will be mear two.

The search works away from two in the direction of increasing § and stops
when a local maximum ie detected. There ie no general guarantee of hav-
ing hit upon the abeolute maximum; howvever ve have tried more extensive
routines on a large and diverse clases of data sets and have by comparison
fornd the simple (and efficient) routine given here to be comsistently
satisfactory (typically the fumction ¢, for the given data, had but ome
maximum.) We are confident i.aat this routine does, for the intended
application, provide a good estimate.

20
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benefit in terms of accuracy from a direct approach. Prevailing against
linearization are the nonlirearity of the form in the parameter p and
the special role of the paraneter Ve (or ¢).

If one were content to take form (1) (or (2) with p prescribed),
restrict this form to its support, deletz certain data points and trans-
form the remainder, then linearization is feasible. A problem here,
besides loss of generality and incomplete utilization of informationm,
is that a sound decision on point deletion can be critical and is not
always apparent. An obvious but not consistently judicious choice is
to delete all points for which there is no perforation; i.e., the linear
formvrz = o’ (vs2 - VPZ) is adapted to those points (vsz, vrz) for which
vy is positive. Such procedure is recurrent in the literature and goes
back at least to Robertson [1943]. A rather more sophisticated approach

along these lines was used for generating initial estimates in the
preceding algorithm.

For the price of nonlinearity and a higher level of machine depen-
dence we find it far preferable to systematically fit a complete and
more general form to a complete data set.

3. Some Statistical Contingencies

The effort here is to suggest some plausible areas for statistical
exploration. The questions raised will likely require better formula-
tion from keener perspectives at another time and we will not at this
point be particularly inhibited by lack of precision,

Till now we have adopted a deterministic view of velocity dependence.
We have assumed the pretense of being able to deal with a specific
residual velocity consequent to a given striking velocity; more real-
istically we should perhaps enquire of the precbability that for a given
striking velocity the residual velocity (regarded as a random variable)
will belong to a specified interval. It is transparent that for each

Vg, Prob [0 K v, < vg] = 1;* significant statements of this nature would
however be welcome.

To what extent can meaningful assessments of confidence be attributed
to estimated parameters? Size of the data set is clearly important.
Also significant surely, and in different ways for the different parame-
ters, is the distribution of striking velocities; a concentration of
prints about the estimate v, is bound to enhance confidence in that
ectimate but refiects little on the parameter g which is mostly influ-
enced by points with high striking velocity. Estimation and exploitation
of relevant variance measures is probably essential.

“niess fortuity in measurement is comsidered to admit of the possibility
that V. > V.
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The parameter v, is often of primary interest. One would ideaily
hope that some reasonable assumption about probability distribution,
interacting with statistical invention, could be brought to assert that
for a reasonable data se: the quantities Prob vp = 0 | vg < vg - €] and
Prob v, > 0 | Vg > vy + e]* are reasonably large (proximate to one) for
reasonagly small positive values of ¢. It would be additionally provi-
dent were the above probabilities tc equal one-half for £ = 0, in which
case vy would be equivalent to what has elsewhere been termed "vgpo", the
concept of which, along with other piobabilistic phenomena, has provoked
the perpetration of much nonsense in ballistic literature.

Of allied interest would be a measure of relative confidence in
different v;'s extracted from different data sets. Consider the follow-
ing situation. A collection of v,'s is at hand and one is equipped with
a general form purportedly able, Over some broad range of situations
including those which yielded the v,'s, to represent limit velocity
in terms of the physical set—ug (materials, geometry, etc.); e.g.,
variants of the de Marre form"® have been fashicnable in this regard for
nearly a century. One then regresses to the collected v,'s to evaluate
parameters - but ideally the various v;'s should be variously weighted
in the relevant regression function so as to reflect their various
relative degrees of reliability.

Another problem involves the design of methodology for data acquisi-

tion relative to a given projectile-target situation. With reference

to a priori value judgments about information desired, and constrained
by economic and physical limits, a suitable and efficient experimental
strategy needs to be ordained. A new dimension of complexity is injected
at this stage by the intreduction of another random variable; striking
velocities can, we suppose, be regarded as deterministically wcasured,
but they certainly cannot be so controlled.

*Prob [A|B] is the (eonditional) probability measixre of A given B.

%4
The mogt prevalent de Marre-type form and one in cirrent local usage,
a dimensiwnally purified revieion of the original, can be vwritten as

vy = (t/d)Yv kd>/m where d and m are rrojectile diameter and mass, and
t 48 target thickness (or thicknees times a function, such as secant,
of inetdence angle). k, with units of force per area (e.g. a multiple
of yield stresa), and v are the paraméters to be estimated. A
(linearized) regression procedure in this case ts apparent, The form
i8 (perkaps obviously) empirical but not without an element of physical
appeal, especially in the rigid-projectile context for which it was
originally intended; indeed some quite gerious theoretical analyses,
invoking principles of elostieity and hydrodynamics, have produced
models of thie type with values for vy of 1/2 and 1 (our data-dependent
least squares determinatioms for y have typically been near .8).
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If limi¢ velocity is the sols objective, the attempt should be
towards obtaining perforations and non-perforations within a small range
of striking velocities.* Should the intent be for uniformity of confi-
dence in the full relationship, or if there is a weighted concern with
perhaps disproportionate interest in limit velocity, then an imposing
variety of concepts needs to be formalized and an appropriate experiment
designed. At issue, briefly, is the prescription of standard procedurss
for generating sets of (vs, vr) data from which limit velocities and

overall velocity correlation can, with measurable reliability, be
systematically and definitively determined.

IV. THE COMPUTER PROGRAM

1. Introduction and Examples of Output

The algoritham of Section III. 1. is encoded in a Fortran Program
to generate parameter estimates from a given data set. Plot routines
provide separate graphic displays of each of the consequent form (2),
(3) and (4) representations; the form (2) representation (the (VS' vr)

curve) being no doubt of predominate interest. In each case the given
data set or the appropriate transformation thereof is also graphed; for
(2) and (3) relevant asymptotes are plotted as dotted lines. In

deference to machine notational limitations, the symbols Ves Voo Vps G
and p are replaced by X, Y, C, A and P respectively in plots and print-
out. S will designate the root mean square error (c.f. page 17)
associated with the fit of the detcrmined (Vs' vr) curve to the given

(vs, vr) data set.

Although our special concern in this report is with the standard
program SP (in which all three parameters are determined), we provide
as well for the options 01, 0,, and 04 described earlier and addi-

tionally for the possibility of plotting graphs and relevant points
when all three parameters are initially prescribed,

One page of computer printout includes a tabular listing of the
data set (observed striking and residual velocities) along with
some derived quantities which may be of peripheral interest (e.g.,

*One congectures tnat a vp 80 generated 18 inherently "better" than the
analagous extraction from Sensitivity Analysis, <n which there is
senaitivity only to quantal response (yee or no a8 regards perforation)
and which, provided residucl velocities are watched, seems far less

ex; loitative of information.
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the "errox" at each observed striking velocity between the observed

residual velocity and the residual velocity associated with the determined
fit).

For SP and 02. a second page of printout tabulates ‘'optimal'

values for A and C corresponding to each value for P considered by

the search routine described on page 20; the root mean square error 5

associated with each such P is also calculated and printed. In

particular, the "optimal" form (i) fit is determined (recail that

the search routine in question starts from, and hence always examines, -
the case P=2).

In the following pages we offer examples of machine output as generated
by the standard program. These are meant to be more illustrative than
substantive; actual projectile-target situations involved, though
partially and cryptically specified in titles, are of little concern and
we do not elaborate.

Figure 1 provides displays of striking versus residual velocity
(form (2) representations) generated by two different data sets. Figure
2 depicts striking velocity versus residual velocity and striking velocity
versus velocity loss (form (2) and (3) representations respectively)
associated with the same data set. Next is an example of the complete
cutput (in actual output size) from a single set of input data: tables
Ia and Ib comprise the computer printout; figures 3a, 3b and 3c are
respectively the forms (2), (3) and (4) plotter displays.

A b o oy
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2. Input and Program

In Appendix A is found a guide to the input for running the regres-
sion procedure program listed in Appendix B. The program is written in
Fortran language for BRLESC but could be adapted to other computers,
with a few minor changes, i.e., replacements for SORTXY, SCOCP, length of
Holierith statements and USE (MAIN COMMON). SORTXY (X, Y, N) sorts the
elements of vector X into non-decreasing order and moves the elements of
Y so they correspond to the original values of X. SCOOP is the BRLESC
implementation of the basic Fortran software package described in the
publication "Programming CALCOMP Pen Plotters" [publication No. 1006A,
California Computer Products, Anaheim, Caiifornia, 1969]. A word of
caution: XL, the third argument in PLOTS, is the length of paper required
instead of the logical output device number as commonly used. This
program is set up for 30 inch width paper.

Any or all the options and alternatives can be employed by setting
the appropriate flag for each data set. The plots and tabulation will
indicate which parameters, if any, are specified. In addition the first
and third plots can have different scales. The usual procedure is for
SCOOP to determine the initial X and ¥ values and data units/inch but
this can be bypassed with the flag FIXAX and the alternative values
stipulated.

The program employs 13K memory and a collection of sample problems
averaging fifteen pairs of data points required an average of 19 seconds
of computer time per problem.
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(1) P only, OPT (2) !

- APPENDIX A

! INPUT DATA

r

. CARD T ORMAT COLAMNS PROGRAM NAME INITS REMARKS

1 Flo.0 i-10 xn inches Maximum amount of plotting prper for
this computer run. (Approximstely iS
inches per set of 3 plots)

Fi0,0 11-20. PINCR Vaiue used for incrementing paraseter F,
' Pe.} is used in this report

2 7A)0 1-70 TITLE (1) Title to head tables and graphs (up to
70 characters)

3 133 1-5 N Nusber of dats peints. Dimension state-
ments ar¢ set up for 97 hut can be
altered

- 143 6-10 iFF Dimension flag for (X, Y) data (w/sec=0,
ft/sec»1)
15 11-18 FIXAX Axis flag for Plot 1 and Plot 3 (not
specifieds0, specifiedsl)
I 16-20 PLY Plots only, where P, A and C are given
15 21-25 oPT(1) Flag for parareter P given (ycss],
no=0)
15 26-30 OoPT(2) Fiag for paramcter A given (yes=1,
no=0)
15 38-38 oPT(3) Flag for parameters P and A given (ycs»},
no=g)
. 15 36-40 oPT(4) Flag for climinating standard program
{yes=1, no=0)
N 4 atc. 8F10.0 1-80 X(1), Y(1) ft/sec or (v‘, vr) data, four pairs to a card, in
n/sec units of m/se: or ft/sec as indicated
by 1FF flag
THE FOLLOWING CARDS ARC DULPENDENT ON ABOVE FLAGS: IF NONE, 1GNORE
If FIXAXs!  F10.0 1-10 PLFX} n/sec Minisum X value for Plot | horizontal
. axis
F10.0 11-20 PIDbX1 a/sec Number of data units per inch for 7lot
horizontal axis
F10.0 21-% PLDY1 a/soc Nusber of data units per inch for Plot 1
vertical axis which starts at zero
F10.0 31-40 PLDX3 n/sec Nusber of data units per inch for Plot 3
horizontal axis which starts at zero
F10.0 41-50 PLIY3 n/sec Numbey of dats units per inch for Plot 3
verticsl axis which starts at zero
1f PLT=] F10.0 i-10 C n/sec Parameter of equation
F10.0 11-20 A Parameter of equation
F10.0 21-30 [ 4 Paramoter of cquation
: If OPT(I1)=i F10.0 1-10 | 4 Parameter P given | One card per option
1=}, 3 ’ requested, For OPT
F10.0 1n-20 A Parameter A given
A only, and OPT (3)
both P and A
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PROGRAM LISTING ;
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Lo Preceding page biank |
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DIMENSLION DS(1003, OY{120), EY{100}), OPV(4), YC({1Q0} !
COMMON &, AX(100}), AY(100G), BDXI5), BDY(5), BDZ(5}, BX(T), DY(T), |
1 CX(133), CY{10C), FIXAX, FX{100)y Ly Ne¢ Py PIHNCR, PINV, Sy SYSUs
2 TAL3), YBU3)s TCUL2), YO(2), TF(2)y TO(3), TITLE(T),y X(100), |
3 Y(102), PLFX1l, PLOX1l, PLFYLl, PLDYl, PLFX3, PLDX3,; PLFY3, PLDYY,
& PLY, LBUFC1000), XINCy; YIMNC, TEs Lo TGl2) e TH(2)y NCASE

; INTEGER ALPHA,BETALFIXAX,OPT,PLY

DATA (BDX(I),BDY(1)eBOZUTI)eInly5) /=142y =1aS¢ =1a8s Y03 =1a59 -1
1aBr 935 8055 64621 =1le2s 6059 602y —la2y ~le5y =le8/

DATA (BXUL)oBY(I) 3 1=0uT) 5879 20460 5.T6y 2,46, 5476y 2.25, 5.69
s 20215, S5¢7€r 2¢189 S5.T6y 1.97y 5.87¢ 197/

]

. OATA (TA(I),1=143) 710MX STRIKINGy 10H VELOCITY , LUH(M/SEC} / ;
OATA (T8(TI),1=1:3) ZLCHY/AX={L=(Cs LCH/X) } o X>, LGHC 4 ]

DAYA (TC{I),1I=142) /ZLOHALX =C ) 4 LMOHXDC / ]

CATS (TD(I)yI=1,2) /Z1QHP p » LCHL/P / :

. DATA TE /7H(GIVEN)/ i
DATA (TF(I),y121,2) /XOHX=ALX ~C )y 1OH HX>C 4 :
CATA (TG(I),1=1,2) /1OHX-Y (M/SEC, 13H) / !
DATA (YO(E),1=143) /LOHY RESIDUAL, 10M VELOCITY o 1CH(M/SEC) /
DATA (TH(I)y1=21,2) /1OHPARAMETERS, 10H GIVEN /
READ (5,37) XL,;PINCR

C
~ C XL « TOTAL LENGYH OF PAFER NEEDED FOR GRAPHS
(o PINCR ~ INCREMENT FGR P FQR QPTIOMS 2 AND &
C
CALL PLQOTS (IBUF,1000,XL)
CALL PLIOT (04380 =326.04-M)
. CALL PLOY (54042.0,-3)
N X1HC=15.
YINC=9,
FX(L)=0,
00 1L 1=2,50
1 FXU{LIsFLOAY I-1)%,02
FXt{51)=1.0 -
FXi{52)=0.,0
FX{3)3)=,25
C #8846 TITLE WiLL HEAD ALL GRAPHS AMD TABULATIOMS
2 REAG (5,35) (TITLE(L),I=1,T)
WRITE (6+439) (TITLECI)1=1,T7)
IHEADG=9)
5 READ (5,36) NolFF FIXAXyPLTo(CPTUI i pI=198)o(X{J),Y(d)yI=1sN)
) [
C N - MNUMBER OF DATA PAIRS (DIMEMSIONING ALLOWS FHAXIMUM OF
C IFF - DIMENSIGN FLAG FZR DATA M/SEC=0Q FT/SEC=1
C FIXAX - FIXEDN SCALE FOIl AXIS MNxD YES=a]
C PLT - PLOTY WITH GIVEN AsPAND C YES=1 NU=0
C oPrPYTLL) - P GIVEN YES=1 NO=0
(4 oPTL 2} - A GIVEN YES=]1 Np=0
. C uPTi35) -~ A AND # GIVEM YES=x1 MNO=C
(4 IPTLL) - ELIMIMNATE STAMNOARD PROGRAM YES=1 NO=0
C X - STRIKING VELCCITYY i
: . g ¥ ~ RESIDUAL VELOCITY
C .
IF (FIXdXaGTL.0) READ (5,37} PLFXI.PLDXI.PLDYf.PLDX3.PLDY3 i
c .
C PLFX1 - STARTING VALUE ON HCRIZONTAL AXIS PLOTL !
C PLODX1L ~ DATA UNITYS PER IMCH HORIZOMTAL AXIS PLOTL
L PLOYL -« DATA UNITS PER [NCH VCRTICAL AXIS PLOTL B
C PLDX3 - DATA UNITS PER INCH HORIZONTAL AXIS PLOT3 i
. . !
o, Preceding page blank :
41 ‘
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PLDY3 = OATA UNITS PER INCH VERTICAL AXIS PLOT)

IF (1FF.EQ.0) GO TO 4
58 CONVERTS FEET TO METERS
D8 3 K=,k
X{K)uX{K]®,3040 .
YIKI=Y(K}3,3048
s8¢ LRAAANGING DATA IN INCREASING ORDER FOR STRIKING VELOCITIES
CALL SORTXY (XoVyN}
S\' SQSO.
DO 5 Is1,N
SYSQaSrSLeY(IYevY(])
IF (PLTeGTeO} PEAD (5:37) CyA,P

C ~ LIMIT VELOCITY
A = SLOPE
e ~ EXPONENT JF FIV

WRITE (6,28) (X(1)yYi{llol=l,yN)
DD 32 Lal,é -

IF (PLT.GT.3) GO TO 25

IF (CPT{L1eEQeeANDsloLTen) GO [0 32
JF (LeEQ.4«AND«OPT(4)e£Qel) GU TO 32
IF (L.EQ.4) GO YO 8

JFIN=G

JOPT=1

IF (OPT(L)elLT.JOPT) GO TO 32

READ (5,437) PsA

PsA = PRESCRIBED VALUES. NUNE TO THREE DATA CARDS DEPEND-
ING ON OPTIONS

JOPT=J0PT+}
Gh YO 9
JFIN=l
00 10 [=1,N
ALPHA=]
IF (Y(1).GY,06) GO YO 11
CONT INVE
UETA=O
NM]1=N-]
Gd 12 lsl.hnl
IF (Y(1).EQ.0Q.,) BETA=]
CONTINUE
seds [INITIAL ESTIMATE OF C
Bl=0,
B2=),
83=0,
B4s=0,
IF (LeEQe2.0ReLoEQa%) P=2,
DO 13 K=1,N
IF LY(K).GT.Q.) GO TO 4
CONTINUE
DI 1S IsK.N
XP=X(1)eep
YPsy(lissp
Bi=Bdlexpse2
82=R2¢xp
83nBl+YpP
B4uBheXPeyp




16
17

18
19

20

21
* [

2

23

24

) 25
_ c
¢
¢

ReN-K¢1
RB1=ReBl
B2SQ=B23¥p2
IF (RB1.EQ.R25Q) GO 70 16
U= {R*B4-D2¥Bl}/{RBL~-B250Q)
GO YO 17
U=g, .
IF (U,LE.0.) GO TO !}
Ta(B2%U~-83)/ (ReY)
IF {T.LE.0.) GO TO 18
TeTes(l,/P)
G0 TO 19
T=0,
TI=AINT(T)
TK=T-TI
T=TI
IF (TKeGToeeS) TaTI¢le
IF (ALPHALLECBETA) CZ=xAMAXL{T,0,)
IF (ALPHACGTZBETA) CZ=AMAXI(Y,X{BETA})
C=C2
WRITE (6,40)
I1=0
IF (IHEACG.EC, 1) GO TO 34
JHEADG=1
CALL PARAMBTERS
WRITE (6,41) PsAyTHyS
lF (L.EQ.Z.OR.L'EQOI" GO TO 26
WRITE (6,42)
*¢%3 SUMMARY TABLE OF DATA FOR PLOTS
AVG=Ve. .
PINV2l,./P
DD 24 I=1,N
IF (X{1),LE.C) GO TO 23
YCLI)=As(X([)d&p-CasP)esPiNV
EY{Ii=v{[)=YCLI)
DS{N)=X{I)=-YC(I)
DY(1)=X(1}=Y(I}
AVG=AVG+EY(I)
GO YO 24
YC(1)=0,
GO 70 22
CONTINUE
AVG=AVG/ FLOATEN)
MRITE (5+43) (TITLE(I)4I=1e7)4PsAyCyAVE
WRITE (6044) (XIT1),¥YUI)aYCUL)LEY{T)40Y(T)4DSIL) oI=1, N}
WRITE (6,45)
IF (LJEQel) WRITE (5,946)
IF (LoEQs2) WRITE (6,47}
IF (LeEQ.3) WRITE (6448)
WRITE (6,42)
CONTINUE
IF (PLT.G740) L=0
ses% PLOT # VS Y [STRIKING VELOCITY VS RESIDUAL VELCCITY)
CALL PLITIL
sees  PLOT C/X VERSUS Y/AX
CALL PLOT2
s PLOT X VS X=Y
CALL PLOT3
IF (PLT.GTe0) GO TG 33
IF {JFIN.EQ.Q) GO TO 7

43
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GO T0 32
so90 GETERMINATION OF P
28 IF (11.6T.0) GO 10 28
11w}
DIR=PINCR
KN=0
27 PREVA=a
PREVC=C
PREVS=S
PREYPup
PsP+0IR
G0 Y0 29
28 IF (S,GE.PREVS) GO TO 30
IF (PcGCEL8+s040R.PLEMLel) GO TO 21
29 MM=l]
GY TO 27
30 IF (MH.GT.0) GO TO 21
OIR==PINCR
GO TO 29
31 C=pREVC
ASPREVA
PwPREVP
S=PREVS
GO 10 21
32 CONTINUE
G0 10 2
33 PLT=0
IHEADG=1
GO TO &
36 WRITE (4,39) (TITLEUI),I=1,7)
WRITE (6,38) (RUI1,Y(U),U=]1,N]}
GO TQ 29

35 FORMAT (7A41Q)

36 FORMAT (Q15/(8F10.0})

37 FORMAT (BF10,0)

38 FORMAT (/76X lHX e OX e i1HY 9K o IHX g X 1HY 4O 1HXyIXsIHY o 9X e 1HX o 9OXo LHYS
1/43X gFbe0pa% ) FOe0s2XeFbaDs@XoFECIOXaFOaleaXoFOe0 14X oFEe04X5F6,0)
2)

39 FORMAT (1X,7Al0)

&0 FORMAY (/77}

41 FORMAT ('P=? ;F54293X9 An?yF8e3)3X,'Cm* yF6,043X,*Sx*,F9,:3)

42 FORMAT {1M1) ’

&3 FORMAT (/7/731GCX,TAYQ//7/15%X2HP=qFholeSHy Ax,F5.2,5H, C=yF6,0,18H
1 M/ZSEC, AVOIY=Y )= ,F6:0/ 15X A9HY *mA{XseP-Coap)n(]l/P) IF XL, VY'=
20 OTHERWISE J7/71TXs IHX yBX g LHY s BX o 2HY ' 36X 9 4HY=Y? 35Xy IHX~Y 96X ¢ HHX =
3V

Gbh FORMAT (14X, F6,0,3XsF0aC13XsFCa00IXeF5:0,3X4F6.093XyF60)

&5 FORMAT (//71CX,28HXsY AND Y*' ARE IN METERS/SEC,/7)

45 FORMAT (10X, *PGIVEN')

&7 FORMAT (1OX,'AGIVEN')

48 FIORMAT (10X, 'PANDAGIVEN®')

ealn
wowv

SUBROUTENE PARAMMETERS
CIMMIN {USE MAIN)
DINENSION XP{100), YP(IOO)
H=0




c ses¢ DETERMINATION OF A |
00 1 Kul,N |
XP(K}aX{K)®ep ]
L YP(K)aY(K)e®P ;
PINV=1./P ;
2 IF (CelT.0e! GO TO 9 o
CPulodp
00 3 Ksi,N .
IF (Xi{K)4GEAC) GG TO % :
3 CONYINUE
& G‘Ol
He U
' 0o % "K.N
, XPMCP=(XP(1)-CP}o*PINV
) G=G+Y (1) #XPHCP
5 HxH¢XPMCP#®2
GOMH*G/H 4
IF (LoeESe1+0RoloeEQoe4) AsAMINL(GDHgls)
PHI=A%({2,%G-A%H)
< #% DETERMINATION OF C AND §
IF (MGT.0) GO TO 7
M=]
DIR=1,
MM =0
6 SAVEAL=A
SAVEP2PHL
SAVEC=C
SAVEG=G
SAVEH=H
C=C+0IR
GO TO 2
7 IF (PHI.GE.SAVEP) GO T0 8
IF (MM.GT.0! GO YO 9
DtR=-1.
. 8 MMs]
GO TO &
9 A=SAVEA
C=SAVEC
PSi=ABS{SYSQ~A%{ 24 ¥SAVEG-A*SAVEH))
$aSCRI(PSIZ/FLOAT(N))
RETURN i

Dy

ENOD !

aan O

SUBROUTINE PLOTY ;
: COMMON (USE MAIN) :
o JJ3=0
; . PINV=1,/P
IF {FIXAX.GT.0) GO TO 16
' : IF (CoLTeX{1)) GO TO 13 )
CALL SCALE (X:B.ONe1) : |
c ASSURES Y AXIS STARTS AT ZERO :
Yi{N+L}=0, -
N=N+1
CALL SCALE (V5¢09Ns1l)
YONY=Y{N+1)
YIN+L) =Y (Ne2)
N=N-1




N
*
whuadbiats. i

» IF (JJ.,EQ.1) GO TQ 14
Abml~X{N+2) 4
IF LAALT.X{N+1)) GO 7O 15 ;
C #8% PLOY TITLES.AXESs AND PARAMETERS

3 CALL AX!S (0e030404TAG=3048,040,CoXIN¢L)eX(N®2}) ]
CALL AXIS (0e0,0e0,T70,3055,0490,0,YIN#1)Y(N+2)) s
IF {(FIXAX.GYa0} GO TO 18
CALL LINE (XeYoNole=1s1) 4

& CALL SYMBOL (=e595¢59¢149TITLEL0.0,70) .
CALL SYMBOL (6.66,2632400Ty5H¢ €eGsJe5)

CaLL SYMBOL (549924250144 8H0, O X CsCa0y8)

C‘LL SYMBOL (6.‘06. 2.25' .07’5"3 “.000'5'

CALL SYMBOL (54344241850 15692HY2,0.0422 '

CALL SYMBOL (6432,24145,a074T0¢Ce0420)

CALL SYMEOL (5¢912404%¢01%4,TC+Ca0,20)

CALL SYMBOL (5,24, 1,.59¢414¢2HP=,0s0¢2)

. CALL NUMBER (54662914590 14,P4Ce0s1) )

a IF (LeEQuleDReLoeCQa3) CALL SYMBCL (6632414594014 ,TE40e0,7)}
CALL SYMBOL (5434,1438,4¢14;2HA=40.042) i
CALL NUMBER (5.6241¢38,.149A,8.0,2) ;
IF {LeTQe2e0Rul.oFQe3) CALL SYMBIL (6432910389014 9TEc0a0,7)
CALL SYMBOL ‘5.34v1.17.014.2HC=’0.0QZ’ M
CALL NUMAHER (5.6211.17..1"'C‘C.J."l‘ i
CALL SYMBOL (603232y1el7yel%ySHM/SEC,0a0¢5) :

h e e AR am

el e MBS o A BOTa . A

IF
IF
IF

IF (PLTLEQ.Q) CALL SYMEOL

{PLTLEQ.0) CALL NUMBER
(PLT.EQ.D) CALL SYMBOL
{PLTLGT.0) CALL SYMBOL

(5634406690 1492HS2,0640+2)
(5062.066.01“"5'0.0"1,
(6632936694 14ySHM/SEC 000,45}
{563444669e14,THy0eCy20)

c *#% PLOT BRACKETS
CX(3)=X(N*1})
CXL9)=X(N#+2)
CY(3)=Y{N+])
CYi9)=Y(N+2)
00 5 I=1,7
CX{T)=3X(1)*CX(9)+CX(8)
5 CY{I)=BY(1)*CY(3)+CY(8)
CALL LINL (CXeCY27¢1,0,1)
C *s%% PLOT CURVE
AMAX=X(M+1)+8.*X(N+2)
YMAX Y(N+l)e5,5V(N+2)
NN=2
AX{L)=XIN#1}
AY (1} =049
AX(2)=C
AY 12)30.D
DRa{Y(N+1)+5.0%Y(N+2))/48,
IF (AX{2).LT.AX(1))} GO TO 17
6 DD 7 [=3,50
AV(i)=AY(I=1)+DR .
IF [AY({1)sGEsYMAX) GO TO B
AXLIY={{AY(1) /A)**PsCE*P josp [NV
i¥ {AX{11eGE«XMAX) GO YO 8
NN={
7 CONTINUE
& AXENN+LI=XIN+1)
AX (NN+2}1=X{N+2)
AY (NN#]1Y=Y{N%])
AV (NN+2)=¥{N+2)
CALL LINE (AX,AY)NN,1,0,0!}
C a8 PLOT ASYMPTOTE

46
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NN=i
AX{L)=XIN¥1) :
AY(1)=Y{N+1) .
DR=(XMAX=-XIN+1)1/49, ;
DO 9 i=2,50 ;
AX(1)=AXil=1)+0R E
1F (AX(1)eGE«XMAX) GO TO 10 ;
AYQT)sAX{T)eA i
IF (AY(1).GE.YMAX) GO T0 10 ,
9 NN=l -
106 DD 11 I=1,NN
. AX{ID)=(AX{{I=XIN®L))/XINe2)~, 07
AYLI)s(AYLL)=VIR+1))/Y(Me2)-,035
11 CALL SYMBOL (AX(1)4AY{I)saléy1H,,0.041)
[ st PLOY BORDERS
. CX{6)=x{N*1)
CX{Ti=X{N%2)
CY(6)=Y{N#L)
CY{7)=Y(N2)
0D 12 1:1a5
CX(I1=80XCII*CX(TI4CXI6Y
12 C¥{I)=BDY([)*CY{T)I+CYi6) -
CALL LINE (CXsCYy541,0,1)
CALL PLOT (OssYINC,-3)
MRITE (6420)
RETURN
13 SAVEl=X{1l)
SAVE2aY(1ll
=1
X(1ly=C
. Y{1)=0,
: G0 70 1
14 X(1)=SAVEL |
Y{1)=SAVE2 :
GO0 T0 2 : , 1
c ASSURES SPACE ON PLOT BETWEEN XMIN AND X=(
15 X{N+1})=AA
Y{N+1)=0.
N=N+l
IF (XIN)J,LE.Oe) X{N)=0,
CALL SCALE (XyB.0,HN51}
CALL SCALE (Ys5.0sNy 1)
XENI=X(N+1) : i
YIN)=Y(MNal} '
X(N+L)=X (N+2)
YIN#1)sYIN#2] . ‘
N®N-1 : !
G0 TO 3
16 X{N#*i)=PLFX]
. X(N+2)3PLDX]
N Y(N+1)=0,
. Y(N+#2)=PLOY1 . : %
GO TO 3 . !
17 AY(2)=A6(AX{L)$%P~Chap)*kp NV
AX{2)=AX(1) _ i
GO TO & i
18 Ke0 :
D5 19 J=1.N ;
, IF (X(J).LT.PLFX1} GO TO 19 - !
e KaKe) E

o —————s e s
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AX(K)aX{J)
AV IX)=Y(J)
19 CONTINUE

AX{K+1l)=XiN®])
AX(K$2)=XN®2)
AY (K¢l)asY({N®L}
AY (Ke¢2)oY (N+2)
CALL LINE (AXoAYyXKyig=1y1)

GO T0 4

20 FORMAT (12K PLOY 1 DONE)

END

Ao

SUBROUTINE PLOT2
COMMON (USE HAIN}
OIMENSION DL(3])

OATA (DL(l)¢i=1943) /10H=== v 10K ¢ l0H=meenna=a

c s PLOV TITLES.AXES, AND PARAMEYERS
CALL AXIS (Ge090aCe3HC/Xr=34440CsGeDs0a0ve25)
CALL AXIS (0.0¢0.054HY/AX p444,0¢904090607025)

CALL SYMBOL

CALL SyusoL

CALL SYMBOL

CALL SYMAJL

CALL SYMBAL

CALL SYMuOL

. CALL SYMEOL

: CALL SYMBOL
oo CALL NUMBER

(0060309326 14,0L40,0,30)

(46079 =e069014,01L,90,0930)
(~eSv%e54014,TITLEZG.0470)
(56355¢366054607,THP 1/P40e0,T7)
(4¢593a89e14,T0,0.0422) .
(4.5' 2.7'. 14.1’“'0.0! 19)
(405026%101%970,040,19)
(“.5.‘.9|.1‘92HP‘|0.0'2’
14.T8+10%94a14,P,0.0,1)

IF (LoEQ,LlaUReLeEQe3) CALL SYMBUL (504871693414, TE2040,T}

CALL SYMOIL
CALL NUMBER

(Q.Syl.bo.l“lZHQtIOQOOZ’
(4e789546,0144A90.0,2)

IF (LeENL2e0ReLoeEQe3) TALL SYMBUL (Se48y1leb9aléhTED0e0,7}

CALL SYMBOL
CALL NUMBER
CALL SYMBOL

(4.5.1.3..1#.2HC=-0.0v2)
(4a7Byle3yeléyCele0y-11 .
(54801031014 ¢SHMISECY040¢5)

IF (PLTLGTa0) CALL SYMBOL (450407900 léyTH 004200
C s*& PLOY CURVE

AX(li=la
PINV=1,/P
00 1 I=2,50

1 AX(I)'(I.-FX(I)*!P)*‘Plkv

AX(51)=0,0
ARX152)=0.0
AX{53)=,25

CALL LINE (FXyAX451,1,0,0)
™ c s&% PLOT CATA

Ju0
- 00 2 !'1."

ok IF {X{1)aLlT.C) GO TO 2

Jeldsl

CX{I)=C/7XCT)

CYLIN=Y( 1)/ (A®X(1))

2 CONTINUC
CxX(J+1)=0.,0
CXtJ+2)=,25
CY(Jel)=0.0
CY¥lSe2)=,25

Ea
i
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CALL LINE (CXsCYyJilyp=1pl)
vss DLOT BORDERS

CX{o6) =040

CxX{71)a,25

CY{6)=3.0

CYi7)=.25

D0 3 [=1,5

CX{I1)=BDX{I)*CX{TI+CX{¢)

CY(1)=BDLEI)NCY{T)+CY(6)

CALL LINE (CXoCY454140,1)

CALL PLOT (OeoVINC,=3)

HWRITE {(6,4)

RETURN

FORMAT (12H PLOT 2 DONE)
END

SUBROQUTINE PLGT3

COMMON (USE MAIN)

DIMENSION DY(100])

DO 1 I=1,N

OY(I)=sx(1)=Y(])

IF (FIXAX.GT.0) GO TO 10

X{N+2)=C

DY (M+2)=(

X(N+1)=0,

oY (™N»iji=2,

N=N+2

CALL SCALE {X96.00Ny 1}

CALL SCALE (DY s 4eQsNyl)

X{N-1)=X{N+1)

XIN)=X(N+2)

DY{MN=1)=DYIN+1)

DY {N)=DY (N+2)

N=N-2
*#x PLOY TITLES,AXES, AND P. QAMEYERS

CALL AXIS (0e04Ca0s9HX (M/SECI9-99600r 00 X{N+L) X(N+2))

CALL AXIS (0e0e0eDoTGy11,4e2990.0,0Y(N¢L),DYIN#2))

CALL SYMBOL (=254545vel&yTITLECo0yTN)

CALL SYMBOL {10589 4e72¢0lésaHA~Y=40,09%&)

CALL SYMBOL 12e¢829%¢T9¢el%yBHXy O X C30.0.8)

CALL SYMBIL (3,41,4.B6,.,07,5H<S <e0u 045}

CALL SYMBOL (3041044794007 5H= S9Cely5)

CALL SYMBOL (345994.6859.0T7,TDelLe0ye2C)

CALL SVHBOL (2.821".581.1"".’:'010'20)

CALL SYMBOL (545293e04014¢TA4060419])

CALL SYMBOL (545292e834149TCyleuyl9)

CALL SYMBOL (6e50203541492HP=50,092)

CALL NUMBER (5¢78¢243y414cP 040,13

IF {LeEQeloUReloEQe3] TALL SYMBUL (Te489Ze30el®9TEI0a0271)

CALL SYMDBOL (645926094 1%92HA=,C,0,2)

CALL NUMUBER (6478902401 01498,0e0,2)

IF (LeEQe2eVRelsEQe?) CALL SYMBCL (T.48+2. 01-16'7E 06007}

CALL SYMBOL (6659 1leTselé4y2HC=,0,G¢2)

CALL NUMBER (6.78vln7'014'c'010|"1)

CALL SYMBOL (Te34yvieTyeloy6HM/SEC .0.0'6’

IP (PLT4GTe0) CALL SYMBOL (6659101940 l6yTH,060,20)
*#¢¢ PLOT BRACKETS

49
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CX(B)axX(Nel)
CX(9)=X{Ne2)
CY{R)aY(N+})
CY{9)=DY(N+2)
DO 3 1s1,7
CXI1)niBX(1)=3.08)8CX(D}¢CX(B)
CYUII=(BY{1)02.54)¢CY(9)+CY(B)
CALL LINE (CX,CY,7,1,0,1)
- 88 PLOT CURVE
NNs=2
CX{li=0,
CY(1)=0,
CX(2)=C
CYt2})=C
RMAX®&,*DY(N+2)
IMAX=8,¢X(N+2)
DZ=(LlMAX-CX{2))/48,
PINV=1./P
W 4 (23,50
CX{I)ulXI=-1)4D
IF {CX([1sGTalMAX) GO TO S
CY{T)=CX(1)=A%(CX(I)*2P=Cosp )sep [NV
IF (CY([)eGT4RMAX) GO TO 5
NNs=§
CONT INUE
CX{NN+1)=X{N+1)
CXINNE2)=X({Ne2)
CY(NN+1)=DY{N+1)
LY (NN€2)=2DY(N#2])
CALL LINE (CXsCYsNN,y1,0,0)

*s% PLOT ASYMPTOTE
De{l.=A)*LHAX
IF {(0.GT.RMAX) GO TO 11
s ZMAX/FLOATINN-1)
CX(1)=Q,
CY(iL)=0,
DY 7 i=2,NN
CX{I)=CX{l-1)*2
CV{I)=s{l.-A)eCX(])
D0 8 T=1,NN
CXCII=(CXEI)=X(N+]1))/X{N+2}~.07
CY(L)s(CYIL)=DY(N+L)I/DYIN®2)=003S
CALL SYMBOL (CX{I)4CY{ilpaleglHap0e0,1)
CONT INUE ’

&% PLOT UATA
CALL LINE (X,0YgNyly=i,1}

%% PLOT BORDERS .
CX(ot=X(Nel)
CXUT)=X{Ns2)
CY(5)nY(NelL}
CY(7)=Y(N*2)
DO 9 1=1,%
CX(I)=BOXLTieCX(T)+CXI6)
CY(1)=BDY(L}*CY(T)+CY(b)
CALL LINE (CX,CYsSely0,l)
YORIG==2,8YINC .
CALL PLOT (XINC,YCRIGy~3)
WRITE (6412)
WRITE (6,13)
RETURN
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RE TURN

X{Nel1)=0,
LiN+2)=PLDX3
OViIN+1)20,

DY (N¢2)=PLDY]

GO TC 2
IMAX=RMAX/(]e~A)
Go 10 6

FORMAT (12H PLOT 3 OONE)
FORMAT (1HL)
END
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